Skip to main content
The system version of all platform images is Ubuntu, with the majority being Ubuntu 18.04 and a few being Ubuntu 20.04.
For RTX 5090 and PRO 6000 (Blackwell Arch.), use PyTorch 2.8.0+ stable or a recent nightly build for proper GPU support, multi-GPU training, and best performance. Older stable versions may work slowly or with limited features.
Additionally, the initial startup of the Community Images may take a considerable amount of time (potentially over one hour). Please wait patiently for the system to complete initialization.
FrameworksFramework VersionPython VersionCUDA Version
PyTorch1.1.03.710.0
PyTorch1.5.13.810.1
PyTorch1.6.03.810.1
PyTorch1.7.03.811.0
PyTorch1.8.13.811.1
PyTorch1.9.03.811.1
PyTorch1.10.03.811.3
PyTorch1.11.03.811.3
PyTorch2.0.03.811.8
PyTorch2.1.03.1012.1
PyTorch2.1.23.1011.8
PyTorch2.3.03.1212.1
PyTorch2.5.13.1212.4
PyTorch2.7.03.1212.8
PyTorch2.8.03.1212.8
TensorFlow1.15.53.811.4
TensorFlow2.5.03.811.2
TensorFlow2.9.03.811.2
Minicondaconda33.79.0
Minicondaconda33.810.1
Minicondaconda33.810.2
Minicondaconda33.811.1
Minicondaconda33.811.3
Minicondaconda33.811.3(cudagl)
Minicondaconda33.811.6
Minicondaconda33.811.8
Minicondaconda33.1011.8
tritonserver24.123.1212.6
JAX0.3.103.811.1
PaddlePaddle2.2.03.811.2
PaddlePaddle2.4.03.811.2
TensorRT8.5.13.811.8
TensorRT8.6.13.811.8
Gromacs2022.23.811.4
Gromacs2023.23.1011.8
  1. First, check if the platform’s pre-installed images include the required versions of PyTorch, TensorFlow, or other frameworks. If available, prioritize using the platform’s built-in images.
  2. If the platform does not have the desired framework versions, determine the required CUDA version for your framework. For example, PyTorch 1.9.0 requires CUDA 11.1. You can then select a platform image with Miniconda and CUDA 11.1 pre-installed. This allows you to install the required framework without the hassle of setting up cudatoolkit. (The pre-installed CUDA on the platform includes .h header files, which is more convenient if you need to compile code.)
  3. If neither of the above conditions is met, you can choose any Miniconda image and install the required frameworks, CUDA, or even other Python versions after the instance is started.